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The instability of an earlier perfectly matched layer (PML) formulation for the
linearized Euler equations is investigated. It is found that, in the presence of a mean
flow, there exist acoustic waves that have a positive group velocity but a negative
phase velocity in the direction of the mean flow and these waves become actually
amplified in the previous formulation, thus giving rise to the instability. A new stable
PML formulation that is perfectly matched to the Euler equations and does not entail
exponentially growing solution is presented. Furthermore, the new formulation is
given in unsplit physical variables which should facilitate its implementation in
many practical schemes. In addition, the well-posedness of the new formulation is
also considered. Itis shown that the proposed equations are well-posed for horizontal
y-layers but weakly well-posed for verticatlayers and corner layers. However, it
is further shown that they can be easily modified to be symmetrizable, thus strongly
well-posed, by an addition of arbitrarily small terms. Numerical examples that verify
the stability and effectiveness of the proposed PML equations, such as an absorbing
boundary condition, are given. © 2001 Academic Press

Key Words:nonreflecting boundary conditions; Euler equations; computational
acoustics.

1. INTRODUCTION

In numerical simulations with an open domain, such as those that occur in many pi
tical problems in computational acoustics and computational fluid dynamics, it is cruc
to have accurate nonreflecting boundary conditions for achieving time-accurate solutic
Quite often, nonreflecting boundaries are the sources of the most significant numerica
rors in a computation. This is especially true after the substantial progress in recent y
in the discretization methods, such as the utilization of high-order schemes and unst
tured meshes as well as the orders-of-magnitude increase in high-performance comp
power.
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A variety of nonreflecting boundary conditions have been developed in the literature
cope with the open-domain problem. The most widely used nonreflecting boundary c
ditions for the Euler equations are the characteristics-based inflow and outflow bounc
conditions [1-4]. These methods are formed by a generalization of one-dimensional
ler equations to the multidimensional cases. The use of characteristics variables is
ally straightforward and robust, especially for schemes with upwinding features. T
drawback of the characteristics-based boundary conditions is that the accuracy cal
limited. They usually work best when the wave angle is normal to the boundary, a
their performances can deteriorate when the wave angles deviate from that of a no
incident.

Another type of widely used nonreflecting boundary condition is based on the far-fie
asymptotic solutions [5—-8]. The governing equations at the boundary are replaced by suit
forms of modified partial differential equations based on the asymptotic form of the soluti
at the far field. This class of methods, when applicable, can be quite accurate. Howe
because the asymptotic forms are not always available, this type of boundary conditi
may not be applicable in many situations. In addition, to implement the asymptotic solutic
based boundary conditions the computational boundary is necessarily placed at far fiel
achieve the accuracy. This can result in an increase in computational cost.

A third type of nonreflecting boundary condition is the buffer zone technique, whic
is actually a group of methods based on various buffer zone techniques. For instance
computational domain may be extended to create an extra zone where the numerical
tion is damped by an application of low-pass filters, grid stretching, numerical dampir
or a combination of these techniques [9, 10]; or the mean flow is accelerated to a su
sonic velocity toward the end of the added buffer domain, thus eliminating the need fc
nonreflecting boundary condition [11, 12]. The accuracy of these methods depends or
gradualness in which the various parameters are varied inside the buffer zone. Morec
the added buffer zone usually is required to be of substantial length for the method tc
effective. The increase in computational cost can be significant.

A recently emerged method of constructing a nonreflecting boundary condition is ba:
on the perfectly matched layer (PML) technique [13]. In this approach, as in the buf
zone method, extra layers of grids are added to the nonreflecting boundaries in which
outgoing waves are damped or “absorbed.” A major difference between the PML techni
and the other buffer zone techniques mentioned earlier is that the equations to be 1
in the added region are constructed in such a way that, theoretically, the outgoing we
will not cause any reflection when entering a PML domain for any frequency and angle
incidence. Because of this, a PML domain usually is very effective as an absorbing bounc
condition and requires only a small number of grid points to achieve satisfactory rest
[14, 15].

The PML technique was first introduced by Berenger [13] for absorbing electromagne
waves of the Maxwell equations. For the Euler equations there currently are two m
PML formulations. The first formulation was given by the author in [14]. Like Berenger’
original formulation for the Maxwell equations, it used split variables in the PML domair
i.e., the velocity, pressure, and density were split into two independent parts accorc
to the spatial derivative terms in the Euler equations in two space dimensions. The :
ond formulation was given by Abarbanet al. [16]. This formulation did not split the
physical variables but instead augmented the Euler equations with additional terms,
beit complicated, so that all waves decayed exponentially inside the PML domain. Th
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also are other formulations, notably those by Turkel and Yefet [17] that are aimed at
sorbing only the convective acoustic waves when the vorticity and entropy waves are
present.

Unfortunately, both formulations given in [14] and [16] entail exponentially growin
solutions that, if not suppressed or eliminated by numerical dissipation or other means,
cause numerical instability in the PML domain and ruin the numerical solution. In [14], ti
instabilities were suppressed by a use of numerical filtering. In [16], artificial damping ter|
were added to the PML equations. The instability waves of the PML equations formulate
[14] have been studied at length by Tatal.[18]. They analyzed the dispersion relations of
the linear waves and found that the PML equations of [14] have unstable solutions when
the mean flow has a component normal to the PML domain interface. They suggested ¢
of artificial selective damping for the suppression of instability waves, since the unsta
modes were associated with high wavenumbers.

In addition to the instability issue, there also is a well-posedness issue for the forr
lation given in [14]. The original PML equations constructed by Berenger [13] for th
Maxwell equations were shown to be only weakly well-posed by Abarbanel and Gottli
[19]. Later, it was shown by Hesthaven [20] that the formulation given in [14] for the Euls
equations was also only weakly well-posed. It was demonstrated that the PML equati
proposed in [13] and [14] could become ill-posed by certain low-order perturbations. Th
authors attributed the weakly well-posedness, in part, to the fact that PML equation:
[13] and [14] were constructed by splitting the physical variables. This prompted the
to construct PML equations without splitting the physical variables in [16]. However,
mentioned earlier, although the equations given in [16] were shown to be well-posed, t
also admitted exponentially growing solutions. A close inspection of the analysis preser
in [16] indicates that the unstable modes are associated with low wave numbers. In
case, exponentially growing solutions can be foundkfer 0, wherek is the spatial wave
number.

In this paper, we address both the stability and the well-posedness issues relate
the formulation given in [14]. We investigate the cause of the instability and develog
new stable PML formulation. Since the publication of Berenger’s paper [13], many ft
ther studies on the PML technique appeared in the literature. Most of the works, howe
were done in the context of solving the Maxwell equations. Several of these studies
dicated that the PML technique can be viewed, at least mathematically, as a com
change of variables in space (e.g., [17, 21-24]). This view is extended to the study of
Euler equations and is instrumental in constructing the unsplit PML equations preser
here.

The content of the paper is organized as follows: After a brief review of the line
waves and their dispersion relations supported by the Euler equations in Section 2,
show in Section 3 that the splitting of physical variables is not essential when the PI
technique is viewed as a complex change of variables and an unsplit reformulatior
[14] is given. In Section 4, we study the cause of the instability found in the formulatic
given in [14] (as well as its reformulation) and offer an explanation on the origin of tt
instability. In Section 5, utilizing a coordinate transformation, a stable PML formulatic
for the Euler equations is developed. The well-posedness issue of the new formula
is studied and discussed in Section 6. Numerical examples that verify the stability
effectiveness of the new formulation are presented in Section 7. Section 8 has the conclu
remarks.
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2. PLANE WAVES OF THE EULER EQUATIONS

We consider the linearized Euler equations with a uniform mean flow in a vector forn

au ou ou _

M AN g% o, 1
atjL 8x+ ay (1)
where
p M 1 0 0 0010
M oM o0 1 oo oo
=10 *=lo om ol B loo o1 2)
p 0 1 0 M 0010

Here, p is the density(u, v) is the velocity vectorp is the pressure, anlll is the Mach
number (i.e., the mean flow nondimensionalized by the speed of sound). We also ass
that the mean flow is subsonic; i.84, < 1.

It is well known that, when we look for plane waves of the fougek>*tkvy-iet the
Euler equations support three types of waves: acoustic, vorticity, and entropy. In particu
the dispersion relations for these waves are

(@—Mk)? =Kk — k=0 (3)
for the acoustic waves and
w— Mky=0 4)

for the vorticity and entropy waves.
For convenience of discussion, we use the dispersion relations to express the wave r
bersk, andk, in terms of the frequency and a wave anglg; i.e., we have

® COS¢ wSsing

= e —— 5
1+Mcosp’ 7 1+ Mcosp ©)

X

for the acoustic waves and

w wtang
ke = — ky = M (6)

for the vorticity and entropy waves [25]. Then the plane wave solutions of the Euler equatit
are found to be

1
P
u cos¢ | COS iwsing , _
=Al . B .
v sing exp<1+ M cos¢x 1+ M cos¢y th) (acoustig, (7)
P 1
’ S?mﬂ i iot I/f
u | _ - I_a) lwtan . o
v | B cosyr ex <MX+ v Y th) (vorticity), (8)
P 0
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i iwt
exp(lmwx +12 Jnx y - iwt) (entropy. ©)
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whereg, ¥, and x are the angles of the wave-front normal vectors of the acousdic (
vorticity (B), and entropy €) waves, respectively. We note that the wave angles are n
assumed to be the same since the three types of waves are kept independent of each

3. AN UNSPLIT FORMULATION

In the PML methodology, absorbing layers are added to the Euler domain so that
three wave types mentioned in Section 2 are absorbed without reflection. The added |
domains, shown in Fig. 1 (see also Fig. 6), are referred to as horizpfdgkrs, vertical
x-layers, or corner layers. A straightforward extension of the PML technique original
proposed by Berenger [13] for the Maxwell equations suggests a splitting of the Eu
equations according to the spatial derivative terms [14]. This results in the split versior
the PML equations for (1),

BIVEY au

— A— = 1
ot + oxUg + % 0, (10)
auy au

— u B— =0, 11
P + oyUz + ay (11)

whereu = ug + uy. ox andoy are positive absorption coefficients. The conditions on thi
absorption coefficients are thai be independent of andoy be independent at with
both being assumed zero in the interior Euler domain. As shown in [14] (or [15] for a mc
general case), (10) and (11) are perfectly matched to the Euler equations in the rectan
Cartesian coordinates. That is, theoretically an acoustic, vorticity, or entropy wave can e
a PML domain without reflection.

However, as mentioned in the Section 1, Egs. (10) and (11) admit instability way
which, if not suppressed by numerical dissipation or other means, could ruin the numer
solution. In addition, (10) and (11) are only weakly well-posed and can become ill-pos
under certain low-order perturbations on the split variables [20]. We show next, howe\
that the splitting of the physical variables is not essential and an alternative formulat
that is equivalent to (10) and (11) but uses unsplit physical variables may be found
introducing an auxiliary variable.

We begin by examining the PML technique as a complex change of variablesafat
y. Let us consider the split version (10) and (11) in the frequency domain. By replﬁcing
with —iw, we get

N - au
—iwly + oyl + A— =0, (12)

aX

. - ad
—lwlz + oyly + Ba_y =0, (13)

where a tilde indicates the solution in the frequency domain. Dividing Egs. (12) and (:
by 1+ iox/w and 1+ ioy/w, respectively, and subsequently adding the two equations, v
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get an equation in the unsplit physical variables:
ol 1 at
B —

—iwl AT __ B =
w+1+'% 8x+1+% ay

0. (14)

Thus, if we introduce a complex change of variablesfandy as

X = (1+ ﬂ)x, y = (1+ﬂ>y, (15)
w w

Eq. (14) becomes simply

ol ol
+B

—iwl+ A —
@l ax’ ay’

—0. (16)

Itis easy to see that this is exactly the same as the Euler equations when (1) is written ir
frequency domain and andy are replaced by’ andy’, respectively. Therefore, the plane
wave solutions of (16) should be the same as those in (7)—(9)xwitidly being replaced by
x"andy’. Thatis, the plane waves of (16), and thus the PML equations (10) and (11), will

1
P
ul_a 09505 ox i w COSP «_ oy COS y iwsing y
v sing 1+ M cos¢ 1+ M cosep 1+ M cosep
P 1
oy Sing _ '
————Vy—iwt acoustig, 17
1+M cos¢>y “ ) ( 9 17
p 0 _ _
ul_ —sinyr I—wx—3x+lwtanwy
v cosyr M M M
P 0
tan
_ oytany y — ia)t> (vorticity), (18)
g 0 i iwt t
iwtan an .
‘: =C 8 exp(ll\jl)x—aer wM X —UVM Xy—mt) (entropy.
p 0

(19)

Hereoy andoy play the role of the exponential decaying rate while both the wave angls
and the wave vectors (or eigenvectors of (14)) are unchanged. These solutions are perf
matched to (7)—(9). In fact, (17)—(19) are exactly the same solutions as those given in |
when expressed in the unsplit variables.

To implement the PML in the unsplit physical variables, we multiply (14)(bwy
iox/w)(1+ioy/w) and readily get
0x0y g  A0U  Toy 00 g 00 Howgdl (50

il v
@l + (ox + o)t + X  ® ox 0y w dy
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This can be written back in the time domain by introducing an auxiliary varigbielow.
Thus, a reformulation of (10) and (11) using the unsplit physical variables is construc
as

au au au aq aq
99
q_, 22
T (22)

Obviously, (21) and (22) admit the same plane wave solutions as that of the split vers
(10) and (11) because of their equivalence in the frequency domain. It follows that (21) :
(22) are, too, perfectly matched to the Euler equations.

Itis important to note that the auxiliary variatgjés needed only inside the PML domains
because the spatial derivati?@ is required only wheiwy, # 0, which happens only inside
a horizontaly-layer or corner layer an% is required only whemy, # 0 inside a vertical
x-layer or corner layer. This situation is illustrated in Fig. 1. As a result, we do not need
know g in the Euler domain. Thereforg,is neither computed nor stored inside the Euler
domain.

However, although Egs. (21) and (22) are now cast in the unsplit physical variables,
instability issue remains, since both the split and unsplit versions have the same dispel
relations by which the stability of the partial differential equations is determined. In t
next section, we offer an explanation of the cause of this instability and, in Section 5,
develop a stable PML formulation. As we will see, the stable PML formulation adds or
one more term to Eq. (21).

We also point out that the change of variables suggested in (15) can be extende
include the cases in which the absorption coefficientandoy are functions ok andy,
respectively [17, 21]. For simplicity, however, they are treated as constant in the pres
analysis.

Ymax 6,#0 ¢, #0
X 6,=0. o0, 2L x
6,20 X y ox 6,20
o b
Gx#0 0,#0
oy=0 Euler oy=
24 2
2y oy
e b -
G,#0 29 G4#0
G,#0 Ox0. 0y#0. X 6,40
Y . y y
min
X min X max

FIG. 1. lllustration of a computational domain combining the Euler and PML domains. Solid arrowed line
indicate the domains wheidq/dy is needed and dashed arrowed lines indicate the domains whgbe is
needed.
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4. THE INSTABILITY AND ITS CAUSE

Under the complex change of variables (15), the dispersion relations for (21) and (
can be found simply by replacirg andky in (3) and (4) with the expressions

k k
X , ky—> Y
14+ 1+2

w

kK \ kK \° ko \°
w—M—= - X — Y =0 (24)
1+ 1+ 14

for the acoustic waves and

(23)

This results in

(1)—M1+Iﬂ=0 (25)

for the vorticity and entropy waves supported by (21) and (22). They are, of course,
same as those of (10) and (11) given in [14] or [18].

As pointed out in [18], for certain real values lof andky, (24) has complex with a
positive imaginary part, thus exponentially growing solutions. In Fig. 2, we plot the contot
of the maximum growth rate; , the imaginary part ab, as a function of the mean-flow Mach
numberM and absorption coefficient, (with oy = 0) for a chosen range of wavenumbers
kx| <5 andlky| < 5. As we can see, the growth rate increases Wtlandoy. Thus, in
practical computations, it would be difficult to suppress the instability occurring in flow
with a high Mach number.

Tounderstand the cause of this instability, we reexamine the exponentinthe PML acou
wave solution given in (17). Specifically, we consider the exponential expression for 1
vertical x-layer

ox COSp X

@ T+Mcos ™ (26)

Sinceoy is always positive, the expression in (26) will be exponentially decaying only

0.3

1.0
0.8 :

0.7 0.2

= osf 0.1

0
00 02 04 06 08 1.0 12 14 16 18 20
UX

FIG. 2. Contours of maximum growth rate, of the four roots computed numerically from dispersion re-
lation (24) as a function of, and Mach numbeM. Indicated are level values @f. o, =0, |k < 5 and
lky| <5.
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(a) / (b)

FIG. 3. A schematic drawing showing the relation between the wave-front normal wecter(cose, sing)
and the group velocity, of the acoustic wave in the presence of a mean flow of Mach nuMbéa) A right-going
wave with co® > 0; (b) a right-going wave with cas < 0.

the wave is

rightgoing and cog > 0
or

left going and co® <O,

whereg is the angle of the wave-front normal vector as defined in (5). Here, the directi
of wave propagation is determined by the group veloeityin that a wave is right going
or left going if thex-component of the group velocity is positive or negative, respectivel
In the presence of a mean flow, however, as we will see below, the group velocity is
always in the same direction as that of the phase velocity and there now exist right-gc
waves with cog® < 0.

For the acoustic waves in the Euler equations, the group velocity, by dispersion rela
3),is

dow Jw
Vg= | =—, = )| = (M +cosg, sing), 27
g (akxaky> (M + cos¢, sing) (27)
whereg is as defined in (5) (see, e.g., [26, 27]). Obviously, there may be right-going wax
(M + cos¢ > 0) with cosp < 0, as illustrated in Fig. 3. For these waves, therefore, th
wave amplitude actually grows exponentially after entering the PML domain, giving i
to the instability. The unstable angles,are shown in Fig. 4.

cost

FIG. 4. Shaded are the angles of the acoustic waves that will be amplified when they enter the PML dome
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On the other hand, for the horizontglayers in whichoy = 0, no instability will occur,
since they-component of the group velocity is in the same direction as that of the pha
velocity. In addition, the vorticity and entropy waves do not concern us because they tre
with the mean flow in th&-direction and will be decaying exponentially according to (18)
and (19).

5. STABLE PML EQUATIONS

As we have seen in the previous section, the instability of Egs. (21) and (22), or (10) ¢
(11), is caused by the convective acoustic waves that have a positive group velocity b
negative phase velocity in thedirection, i.e., a divergence in the group velocity and the
phase velocity. Therefore, to construct stable PML equations, we first use a transforma
so that in the transformed coordinates the acoustic waves become nonconvective an
group velocities of all linear waves are in the same direction as that of the phase velocit
We then apply the PML technique to the transformed equations.

Following similar transformations used in several previous works in dealing with tt
convective wave equation (see, e.g., [5, 16, 17, 28]), we introduce new varkalyleand
t as follows:

_ _ — M
X=X, Yy=v1-M2y t=t+ X. (28)

The corresponding transformed wavenumbers and frequency are

M = 1 —

kx = kx + ma), ky = ka, w=w. (29)

In the transformed variables, the Euler equation (1) is found to be

M ou ou au
|+ —A )| —+A—++V1-M2B—=0, 30
(+1—M2>8t+ 8x+ ay (30)

wherel is the identity matrix. It also is easy to find that the dispersion relations for (30) |
the transformed wavenumbers and frequency are

-
w 2 L2
7(1_ M2)2 —kx—ky_o
for the acoustic waves and
o _
Tz Mky =0

forthe vorticity and entropy waves. As we can see, the acoustic waves are now nonconve
in the transformed variables and, further, the directions of propagation for the vorticity a
entropy waves are unaltered. We note that transformation (28) is slightly different frc
those used in Refs. [5], [16], and [17] in that the frequency, or time derivative, is unchang
under the transformation. This is for the convenience of dealing with the auxiliary varial
later.
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Now, we apply the PML complex change of variables (15) to the transformed equat
(30). In the frequency domain, we modify (30) to be

. M 1 au 1 au
ol +——A)Ju+——A—++/1-M2—=_B—=0. (31)
1— M2 1412 9x 1+% ay

After multiplying (31) by(1 + ioyx/w) (1 + ioy/w), we rewrite it back in the time domain,

M au au 8q
(I + 1 M2A> {Bt + (ox + oy)U + 0xoy(Q ~|—A —i—oyA —

5 9
+V1- MZBB—;_+0X\/1— MZB%: 0.

whereq is the same as that given in (22). Finally, when expressed in the original variab
X, Y, andt, we get the new formulation of the PML equations,

au au au aq aq

— +A—+B— A— B— u

P + ox + 8y+oy X + oy ay + (ox + oy)

oxM
+oxoyq + 1 MZA(U +oyq) =0, (32)

99
— =u. 33
P (33)

To show the stability of (32) and (33) (i.e., that there is no exponentially growing solutior
we need to show only that the corresponding dispersion relations do not have any ro
with a positive imaginary part for any real values of wavenumkgmndk,. It is easy to
show that the dispersion relations for (32) and (33) can be found, equivalently, by replac
kx andky in (3) and (4) with

1 M M Ky
kx—>—1+i$(kx+1_M2w)—1_M2w, ky_>1+ﬂ’ (34)

w

and we readily get

(a)—l—iax)z(a)—}—ioy)2
(11— M?)2

M 2 1
— (w+i0y)? (kx+l B ) —1_M2(a)+lox)2k2 0 (35)

for the acoustics waves and

i oy

+ 1y~ Mke=0 (36)

for the vorticity and entropy waves. Actually, Egs. (32) and (33) should have eight roots
w. The two additional roots fap are found to bey = —i oy with a multiplicity of 2.

Clearly, (36) is stable. The stability of (35) can be shown by symbolic calculations, a
the details are given in Appendix 1. A specific casévbt= 0.9, oy = 1.5, andoy = 0 is
shown numerically in Fig. 5 in which the contours of maximumas a function ok, and
ky, solved numerically from (35), are plotted. All the contours are in dashed lines, whi
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FIG. 5. Contours of maximumy;, imaginary part ofw, of the four roots solved numerically from (35).
M = 0.9,0, = 1.5 ando, = 0. Indicated are the contour levels.

means that the values af are all negative. Therefore, (35) will not admit exponentially
growing solutions.
It is also straightforward to find that the plane wave solutions to (32) and (33) are

1
0
ul Cos¢p ox i w COSP « ox(M + cose)
v | sing 1+ M cosp (1 — M2)(1+ M cosep)
P 1
iwsing oy Sing . .
- - 7
1+ Mocosp i M cos¢y th) (acoustig, (37)
P s?mp i iwtany
u - iw Ox iwtan
=B —X—
v cosy p(MX a—vom*twm Y
P 0
. Wy - iwt) (vorticity), (38)
AN ot
u . ILU B Oy lwtany
2| =C1o eXIO<|\/|X A-—MOHM* T M
p 0
— ayt%y — iwt> (entropy, (39)

where¢, ¥ and x are, again, the angles of the wave-front normal vectors. From (37
(39), we can show easily that the solutions are perfectly matched at any vertical interf
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Solve (41) and (33) Solve (32) and (33)
/ corner -

horizontal y-layer layer
- Solve (40)) and (33)
o
=

Euler domain g //

z
B
b
g

FIG. 6. Anillustration of simplified PML equations for different layers.

whereoy is the same on both sides of the interface, and on any horizontal interface wh
ox is the same on both sides [14]. This includes the interfaces between the Euler dor
and a PML domain as well as the interfaces between two PML domains, such as thos
the corner layers. When compared with (17)-(19), the acoustic waves now are abso
correctly according to the group velocity. In addition, the absorption rate i-thigection is
increased by a factor of/{1 — M?). This means that the absorption rate in xAdirection
will be larger than that in thg-direction if the values of absorption coefficients are the
same.

We note that at a vertical-layer or horizontaly-layer, one of the absorption coefficients
is zero, and accordingly, a simpler form of (32) results. Specifically, we have two simplifi
equations. At a verticat-layer @, = 0), we solve

du du  _au aq
A—+B— B u sAU = 0. 40
a T T 8y+x y+0x+1 M2 (40)

At a horizontaly-layer @, = 0), we solve

ou au ou 0
A ou % +oyu=0. (41)

In both cases, the equation fgis (33). At a corner layer, of course, the full version of
(32) and (33) should be used. This situation is depicted in Fig. 6.

6. WELL-POSEDNESS

We now consider the well-posedness of the proposed stable PML equations (32) and |
For a system of hyperbolic equations in multidimensions, in general, stability alone d
not ensure well-posedness [29, 30]. For convenience of discussion, we write the equat
in the block matrix form

# (@) (0 W)nl(0) (@ D) (e)rofe) e w
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where

<(Ux +oy)l + oA oxoy(l + 1—MM2A)>
B —| 0

and define

A A B B kA + kyB  kyoyA + kyoyB
P=ke = ) ak (T )= (T T T ) @)
0 0 0 0 0 0

We first show thaP has all real eigenvalues and a complete set of eigenvectors. Let
kyA 4+ kyB  kyoyA + kyoyB <eu> (eu)
=X .
0 0 € &

(kxA +kyB)ey + (kxayA + kyoxB)eg = Aey,

We get

0= gy

Clearly, there are two subsets of eigenvalues and eigenvectors, namely, tkp&etok, B
(the same as that of the Euler equations) witk= 0 and those from. = 0 (multiplicity 4)
with e, being arbitrary an@, = — (kA + kyB)1(kcayA + kyoyB)e;.

To study the well-posedness of (32) and (33), it suffices to consider the equations with
the nonderivative terms [29, 30]. This leads to the initial value problem

au ou ou d 0
A q q

ﬁ—i_ a—x—i—Bw +oyAa—X+UXBa—y =0, (44)
2)_? =0, (45)
with initial conditions
ux, y,0 =uo(x,y), ax,y,0 =do(x,y). (46)
Immediately from (45) we have
ax, y,t) = do(x, y). (47)

Applying a Fourier transform in space to (44), we get

ah . L A
m +i(keA + kyB)l + i (kxoyA + kyoxB)Go = O, (48)

where
N 1 /= [ —i (keX+kyY)
Ok, ky, 1) = —— u(x, y, t)e ' XY dx dy

and likewise for§j. Further, we note that matrkgA + kyB can be uniformly diagonalized.
Specifically, we have

E(kxA + k,B)E™t = A, (49)
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where
Mk, O 0 0
a_| O Mk 0 0
| o 0 Mke+Kk 0
0 0 0 Mk, — k
and
1 O 0 -1 1 0 1 1
k Ky
o % oo ., fo-% % %
E= 0 k ky |0 B = K k K
x* % 32 0 ¥ % —%
Ky k, 1
0 -k & 1 0 0 1 1

in whichk=, /kZ + k§ . BothE andE~! are uniformly bounded for all values &f and
Ky.
Utilizing (49), it is easy to find that the solution féris

0=E e ™MEQy — E"X( — e "M AT E(kayA + kyoxB)do. (50)

For well-posednesg) needs to be bounded for all valueskpfandk, and dependent
continuously on the initial conditions. Since bd&andE~* are bounded, the first term in
(50) is bounded. Further, since we have (by (64) and (65) in Appendix 2)

ke A ™| < Co (51)
and
10— e A <t (52)
whereCy is a constant independentlof andky, we get

Gl < IE~*I- I - 1Goll +2Cooy [E*] - IIEI - |A]l - |Goll
+oxtlkyl - IETH - [E] - 1Bl - | doll- (53)

Here| - || demotes thé., norm.

From (53), we easily see that whep = 0 (i.e., in horizontaly-layers), the last term in
(53) vanishes and is uniformly bounded independent kf andk,. This means that (32)
and (33) are well-posed. On the other hand, wiget 0 (in verticalx-layers and corner
layers), the solution may depend on the first derivative of the initial data, which renders
equations only weakly well-posed.

One concern for a weakly well-posed problem is that it may become ill-posed unc
certain low-order perturbations. Although it remains to be seen whether such a perturbz
exists for (32) and (33), we shall show next that the PML equations (32) and (33) can
made symmetrizable and, thus, strongly well-posed, with only a slight modification.
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Consider a modified version of Egs. (32) and (33) that changes only the equat@n for

ou au au aq aq
A— +B— A— B—
at TP T ayer ax T ay
oxM
+(0X+oy)u+axayq+ A(u+GyQ)—0 (54)
d ou ou
aq—l—eayAa FeoBa —u=0 (55)

wheree is any small positive number. When written in block matrix form, (54) and (55
become

1) (o )5 (8)* (s 5 )55(a) +2(5)

— + — + + =0. (56

ot <Q> (eayA 0 /ox\(9 coxB ay Q (56)
Equation (56) is now symmetrizable. To show this, we note the fact that, for the Eu
equation (1), matriced andB can be simultaneously symmetrized. That is, there is

matrix S such that
SAS1=A, SBS ! =

where bothA andB are symmetric matrices. Specifically, for theandB given in (2), we
have

1 0 0 -1 Voo o 0
V2
o |22 7 O s _[om o 0
“lo 2 o 2|77 |l0o 0 mM+1 0 |
. . 00 0 M-1
o -1 o0 |}
00 0 O
. |00 %4
B =
02 0 0
0¥ 0 o0

Now for (56), let

_|
I
/N
o wm
H" o
wn
~

It is straightforward to verify that

A A
T AR
eayA 0

and
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Both are now symmetric matrices. Therefore, (56), or (54) and (55), are symmetrizable
thus, strongly well-posed [30].

Although the introduction of a small parametein (55) formally alters the perfectly
matched status of the equations, its impact on accuracy in actual computations is expe
to be negligible as the value eftan be arbitrarily small. Indeed, as we will see in Section 7
numerical results show very little difference between the solutions obtained using (32)
(33) and those using (54) and (55) for avalue ef 0.005 or smaller. In view of this, the sta-
ble version (32) and (33) is recommended for most practical computations, since itis sim|
and, thus, computationally less costly. The symmetrizable version given in (54) and (5&
suggested if a symmetrizable hyperbolic system is preferred or necessary for the applica

7. NUMERICAL EXAMPLES

We present two nhumerical examples to demonstrate the stability and the effectivenes
the PML equations proposed in this paper as an absorbing boundary condition. Unless n
otherwise, the PML equations used in the computations are those givenin (32) and (33). |
the Euler equation and PML equations are solved numerically by a finite difference sche
Specifically, the spatial derivatives are discretized by a fourth-order, seven point cer
difference scheme given in [8] (the dispersion-relation-preserving scheme), combined \
a five point boundary-closure scheme given in [31]. The time integration is carried out
a fourth-order Runge—Kutta scheme that has been optimized for minimal dissipation
dispersion errors [32] (the LDDRK56 scheme). Further details of the scheme can be fo
in [15] and [33]. As mentioned in Section 3, the auxiliary variatplis only introduced in
the PML domains and is neither computed nor stored in the interior Euler domain. To vel
stability, no numerical filtering or damping is used in all the computations reported he
Indeed, numerical results show no instability.

Since a wide stencil is used in the finite difference scheme, the absorption coefficie
are varied gradually inside a PML domain. The variations of absorption coefficients u:
in the computations are
B

X=X y—¥

D

B
ox = om(1— Mz) ‘

: (57)

s Uy =O0m

wherex; or y, denotes the location where the PML domain starts, Rnd the width of
the PML domain. A factor of - M? has been included i, so that the absorption rates
remain the same in both theandy directions for the reason stated in Section 5. Values ¢
omAX = 2, whereAx is the grid size, an@ = 2 are used for all the results.

At the end of the PML domain, no special boundary conditions are needed except th
that are necessary to maintain the numerical stability of the scheme. According to
characteristics of (32) and (33), for a subsonic mean flow, we should specify three boun
conditions at the left side of the computational domain and one boundary condition e
at the other three sides. For the results reported here, we apply these simple bour
conditions at end points of the PML domains,

atX = Xmax, Y = Ymin @and Yy = Ynax: p=0,

atinflowx = Xpin:p=p =v =0,
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in which [Xmin, Xmax] X [Ymin,» Ymax] denotes the entire computational domain as indicate:
in Fig. 1. Other forms of characteristics-based boundary conditions are equally applica
Alternatively, it is also possible to apply periodic boundary conditions since the numeri
solution decays exponentially toward all the boundaries.

7.1. Propagation of Gaussian Pulses

In the first example, the Euler domain is initialized with acoustic, vorticity, and entrof
pulses, with amplitudegy, By, andCy, respectively, as follows:

2 2 . 2 5
p= Ao —n2 EEEEL] g expl g X2,
16 16
_ 2 2
u = Boy exp{—(ln 2)%}

o2 4 A2
v = —Bo(X — 20) exp{—(ln 2)w},

16
(X + 20)2 + yz}

p=Ao exp{—(ln 2) 16
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FIG.7. Contours of the velocity component atlevels0.1,40.05,4+0.01,+0.005, andt0.001. Four graphs
correspond to timé = 30, 50, 70, and 300 as indicatéd. = 0.9, D = 10Ax.
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FIG. 8. (a) Thewv velocity component as a function of time at poixt, y) = (50, 5). (b) The difference
between the numerical and the reference solutions.

We simulate the propagation of these pulses in a mean flow of Mach nivhbke0.9. The
amplitudes of pulses ar&, = By = Cp = 1. The Euler domain if—50, 50] x [—50, 50]
and the PML domains extend further with a fixed number of grid points. A uniform grid «
AX = Ay = 1 has been used with a time stap = 0.55.

In Fig. 7, we show thev-velocity contours at time = 30, 50, 70, and 300. For this
calculation, the PML domains are 10 points in width; il2.= 10AX. The contour plots
show the exponential decaying of the solution inside the PML domains with no visit
reflection. In Fig. 8a, the time history ofat a location on the interface of the Euler and a
PML domainX, y) = (50, 5), is plotted. The graph includes results from three calculation
for D = 6AX, 10AX, and 1&\x, respectively. Also plotted in Fig. 8a is a reference solutior
which is calculated separately by using a larger computational domain so that it is
affected by the boundary conditions. All three cases show very little error on the scale
the graph. In Fig. 8b, the differences between the numerical and the reference solution
plotted. The reflection errors are indeed very small, especiallp fer 10Ax and 16AX. To
further assess the accuracy and effectiveness of the PML equations, we plot the maxir
difference between the numerical and the reference solutions along all four interfac
namely,x = 50 andy = £50, in Fig. 9. We see that the reflection error reduces with th
increase oD. Clearly, the PML works very well in absorbing all three types of linear wave:
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FIG. 9. Maximum difference between the numerical and the reference solutions along four interfaces
x = 450 andy + 50.

7.2. Periodic Source

In the second example, we solve the Euler equations with the following source te
added to the equation for the pressure:

2 2
S(x, y, t) = sin(Qt) exp|—(In Z)W .
The frequency of the sourcelis= 0.037 and the mean-flow Mach numbem = 0.8. Be-
cause of the mean flow, the acoustic wave has a larger wavelength at the downstream bc
ary than at the upstream boundary. We use this example to show that PML equations
equally effective for long and short waves. The Euler domain iJ0, 100] x [—100, 100].
The sourceis located at, y) = (—20, 0). Figure 10 shows the pressure contours of the nu
merical solution at = 600. The PML domains for this calculation have a wiith= 10Ax.
The calculated pressure as a function of time at two chosen locatiang, = (100, 10)
and(—100, 10), is plotted in Fig. 11. The differences between the numerical and the refe
ence solutions are plotted in Fig. 12. Again, excellent agreements are observed. These
examples show that the proposed PML equations are stable and very accurate and effe
as an absorbing boundary condition.

7.3. Results of the Symmetrizable Version

In this section, we show numerical results obtained using the symmetrizable PML eq
tions (54) and (55). The same calculations presented in the first example are repeated
reflection errors are shown in Fig. 13 for three calculations made with a PML domain wic
D = 10Ax ande = 0.001, 0.005, and 0.01, respectively. Compared with the numerical r
sults in Fig. 9 obtained in Section 7.1, we see very little difference for caseg witB.001



FIG.10. Contoursofthe pressugeatlevelst0.1,+0.05,£0.01,40.005, and:0.001.M = 0.8,D = 10AX.
t = 600.
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FIG. 11. Pressure as a function of time at two selected poMts= 0.8, D = 10AX.
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FIG. 12. Differences between the numerical and the reference solutions shown in Fig. 11.
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FIG. 13. Maximum difference between the numerical and the reference solutions along four interfaces
x = £50 andy + 50. The PML equations used are those given in (54) and (55) with the vatuasohdicated.
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and Q005. A value ok = 0.01, however, produced unstable solution, since well-posedne
does not exclude the situation where the solution could grow at a bounded finite rate
30]. This should not be a problem in practical computations sincan be taken to be
an arbitrarily small number. Therefore, as these calculations have shown, the use of
symmetrizable PML equations (54) and (55) will not affect the accuracy.

8. CONCLUDING REMARKS

We have presented a stable PML formulation for the linearized Euler equations wit
uniform mean flow. Numerical examples show that the proposed PML equations are \
accurate and effective as a nonreflecting boundary condition for open-domain problems
most practical computations, the stable version given in (32) and (33) is suggested becal
is simpler than the symmetrizable version in (54) and (55) and, thus, computationally m
efficient. Of course, for applications where a symmetric hyperbolic system is preferrec
necessary, the symmetrizable version given in (54) and (55) can be readily used.

Compared with the author’s earlier formulation [14], the present formulation does r
need the application of numerical filtering or damping for the purpose of maintaini
numerical stability. Moreover, the use of unsplit variables should better facilitate its ir
plementation in many numerical schemes. Compared with the PML formulation given
[16], the present formulation appears to be simpler and, thus, is easier for its numer
implementation. The current formulation can also be extended to the Euler equations \
a nonuniform mean flow. This will be reported in future work.

APPENDIX 1 : STABILITY OF EQUATION (35)

In this appendix, we show that all solutions to the dispersion relation (35) are stable.
We first show the stability of (35) in the transformed coordinates defined in (28). T
corresponding dispersion relation in the transformed wavenumbers and frequency is
(@ +i00%(@ +i0y)? — B2 (@ +i0y)® — BK(@ +i0)? =0, (58)
whereg = 1 — M2, Let

o=Q+is, (59)

where we assume that bothands are real and > 0. By substituting (59) into (58) we
get

Q — (BAC + 62 + 46,)Q% + pACEZ + PKEGE + 65, =0 (60)
for the real part and
2(6x + Gy) Q2% — 2] B7K2Gy + B2y + (6x + Gy)Gxy| 2 =0 (61)

for the imaginary part. For brevity, we use substitutions="ox + 8, 6y = oy + 3, k2 =
k2 + k3,62 =67 4 62, andoyy = 6xGy. By solving€ from (61) and substituting that into
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the left-hand side of Eq. (60), after some algebraic calculations, we easily get

—[B*KEKEE? + Gy (Kt + KS) + B2k (462, + 26,57
HAGEE + Gy (5% + 465,)] /G + 502 = 0.
Itis easy to see that the above is not possible for any positive nongeég and any real

values ofk, ky. This means that (58) does not admitvith a positive imaginary part.
Now to study the stability of (35), we use a similar method employed in [18]. Define

_ Lo 2(w+iay)2 M 2

and rewrite (35) as
F(w) = BKS. (63)

We show that~ (w) maps the upper-hath-plane into a complex domain that excludes the
real positive axis, as illustrated in Fig. 14, and therefore any solutienwith a positive
imaginary partis not possible for (63). Considigiw) and its counterpartin the transformed
variables,

= o p@tio)’s,

F(w) = (w+ioy) —B mkx.

Since (58) does not have aaywith a positive imaginary parts () will map the real
w-axis and above into a domain that excludes the real positive axis. Now, by the fact t
the realw-axis will be mapped similarly undd¥ (w) and F (@), it follows that F () will,
too, map the upper-hadé-plane to a domain that excludes the real positive axis. Hence,
is not possible for (63), and thus (35), to hawvavith a real positive imaginary part.

Fl®), F@®)
0=m
s I

1 N \
- & g \
| A
,/ | I
| T
c A /,. C

\x >

FIG. 14. Schematic drawing of mappings underw) andF ().
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APPENDIX 2: MATRIX NORMS

For theL, norm of a diagonal matrix, we have

1
w O 0 0
) o L o 0
ke A7 = ’ < Co. (64)
0O O MoTk 0
Kx
0O O 0 Mk —K
whereCo = max(-, 1=57). Further, by
1— et 2ieiet/2gjn(«
| _ Gl
o o
whereax is a real number, we have
1— —iMkxt
S0 0 0
1_e—ikaI
—iAty A —1 0 Mk 0 0
0 —e"*HA™| = <t. (65)
1— e—l(ka+k)t 0
0 0 Mk, +K
1_ g1 (Mkx—kt
0 0 0 7&1&4
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