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The instability of an earlier perfectly matched layer (PML) formulation for the
linearized Euler equations is investigated. It is found that, in the presence of a mean
flow, there exist acoustic waves that have a positive group velocity but a negative
phase velocity in the direction of the mean flow and these waves become actually
amplified in the previous formulation, thus giving rise to the instability. A new stable
PML formulation that is perfectly matched to the Euler equations and does not entail
exponentially growing solution is presented. Furthermore, the new formulation is
given in unsplit physical variables which should facilitate its implementation in
many practical schemes. In addition, the well-posedness of the new formulation is
also considered. It is shown that the proposed equations are well-posed for horizontal
y-layers but weakly well-posed for verticalx-layers and corner layers. However, it
is further shown that they can be easily modified to be symmetrizable, thus strongly
well-posed, by an addition of arbitrarily small terms. Numerical examples that verify
the stability and effectiveness of the proposed PML equations, such as an absorbing
boundary condition, are given. c© 2001 Academic Press
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1. INTRODUCTION

In numerical simulations with an open domain, such as those that occur in many prac-
tical problems in computational acoustics and computational fluid dynamics, it is crucial
to have accurate nonreflecting boundary conditions for achieving time-accurate solutions.
Quite often, nonreflecting boundaries are the sources of the most significant numerical er-
rors in a computation. This is especially true after the substantial progress in recent years
in the discretization methods, such as the utilization of high-order schemes and unstruc-
tured meshes as well as the orders-of-magnitude increase in high-performance computing
power.
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A variety of nonreflecting boundary conditions have been developed in the literature to
cope with the open-domain problem. The most widely used nonreflecting boundary con-
ditions for the Euler equations are the characteristics-based inflow and outflow boundary
conditions [1–4]. These methods are formed by a generalization of one-dimensional Eu-
ler equations to the multidimensional cases. The use of characteristics variables is usu-
ally straightforward and robust, especially for schemes with upwinding features. The
drawback of the characteristics-based boundary conditions is that the accuracy can be
limited. They usually work best when the wave angle is normal to the boundary, and
their performances can deteriorate when the wave angles deviate from that of a normal
incident.

Another type of widely used nonreflecting boundary condition is based on the far-field
asymptotic solutions [5–8]. The governing equations at the boundary are replaced by suitable
forms of modified partial differential equations based on the asymptotic form of the solution
at the far field. This class of methods, when applicable, can be quite accurate. However,
because the asymptotic forms are not always available, this type of boundary conditions
may not be applicable in many situations. In addition, to implement the asymptotic solution-
based boundary conditions the computational boundary is necessarily placed at far field to
achieve the accuracy. This can result in an increase in computational cost.

A third type of nonreflecting boundary condition is the buffer zone technique, which
is actually a group of methods based on various buffer zone techniques. For instance, the
computational domain may be extended to create an extra zone where the numerical solu-
tion is damped by an application of low-pass filters, grid stretching, numerical damping,
or a combination of these techniques [9, 10]; or the mean flow is accelerated to a super-
sonic velocity toward the end of the added buffer domain, thus eliminating the need for a
nonreflecting boundary condition [11, 12]. The accuracy of these methods depends on the
gradualness in which the various parameters are varied inside the buffer zone. Moreover,
the added buffer zone usually is required to be of substantial length for the method to be
effective. The increase in computational cost can be significant.

A recently emerged method of constructing a nonreflecting boundary condition is based
on the perfectly matched layer (PML) technique [13]. In this approach, as in the buffer
zone method, extra layers of grids are added to the nonreflecting boundaries in which the
outgoing waves are damped or “absorbed.” A major difference between the PML technique
and the other buffer zone techniques mentioned earlier is that the equations to be used
in the added region are constructed in such a way that, theoretically, the outgoing waves
will not cause any reflection when entering a PML domain for any frequency and angle of
incidence. Because of this, a PML domain usually is very effective as an absorbing boundary
condition and requires only a small number of grid points to achieve satisfactory results
[14, 15].

The PML technique was first introduced by Berenger [13] for absorbing electromagnetic
waves of the Maxwell equations. For the Euler equations there currently are two main
PML formulations. The first formulation was given by the author in [14]. Like Berenger’s
original formulation for the Maxwell equations, it used split variables in the PML domain;
i.e., the velocity, pressure, and density were split into two independent parts according
to the spatial derivative terms in the Euler equations in two space dimensions. The sec-
ond formulation was given by Abarbanelet al. [16]. This formulation did not split the
physical variables but instead augmented the Euler equations with additional terms, al-
beit complicated, so that all waves decayed exponentially inside the PML domain. There
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also are other formulations, notably those by Turkel and Yefet [17] that are aimed at ab-
sorbing only the convective acoustic waves when the vorticity and entropy waves are not
present.

Unfortunately, both formulations given in [14] and [16] entail exponentially growing
solutions that, if not suppressed or eliminated by numerical dissipation or other means, can
cause numerical instability in the PML domain and ruin the numerical solution. In [14], the
instabilities were suppressed by a use of numerical filtering. In [16], artificial damping terms
were added to the PML equations. The instability waves of the PML equations formulated in
[14] have been studied at length by Tamet al.[18]. They analyzed the dispersion relations of
the linear waves and found that the PML equations of [14] have unstable solutions whenever
the mean flow has a component normal to the PML domain interface. They suggested a use
of artificial selective damping for the suppression of instability waves, since the unstable
modes were associated with high wavenumbers.

In addition to the instability issue, there also is a well-posedness issue for the formu-
lation given in [14]. The original PML equations constructed by Berenger [13] for the
Maxwell equations were shown to be only weakly well-posed by Abarbanel and Gottlieb
[19]. Later, it was shown by Hesthaven [20] that the formulation given in [14] for the Euler
equations was also only weakly well-posed. It was demonstrated that the PML equations
proposed in [13] and [14] could become ill-posed by certain low-order perturbations. These
authors attributed the weakly well-posedness, in part, to the fact that PML equations in
[13] and [14] were constructed by splitting the physical variables. This prompted them
to construct PML equations without splitting the physical variables in [16]. However, as
mentioned earlier, although the equations given in [16] were shown to be well-posed, they
also admitted exponentially growing solutions. A close inspection of the analysis presented
in [16] indicates that the unstable modes are associated with low wave numbers. In this
case, exponentially growing solutions can be found fork = 0, wherek is the spatial wave
number.

In this paper, we address both the stability and the well-posedness issues related to
the formulation given in [14]. We investigate the cause of the instability and develop a
new stable PML formulation. Since the publication of Berenger’s paper [13], many fur-
ther studies on the PML technique appeared in the literature. Most of the works, however,
were done in the context of solving the Maxwell equations. Several of these studies in-
dicated that the PML technique can be viewed, at least mathematically, as a complex
change of variables in space (e.g., [17, 21–24]). This view is extended to the study of the
Euler equations and is instrumental in constructing the unsplit PML equations presented
here.

The content of the paper is organized as follows: After a brief review of the linear
waves and their dispersion relations supported by the Euler equations in Section 2, we
show in Section 3 that the splitting of physical variables is not essential when the PML
technique is viewed as a complex change of variables and an unsplit reformulation of
[14] is given. In Section 4, we study the cause of the instability found in the formulation
given in [14] (as well as its reformulation) and offer an explanation on the origin of the
instability. In Section 5, utilizing a coordinate transformation, a stable PML formulation
for the Euler equations is developed. The well-posedness issue of the new formulation
is studied and discussed in Section 6. Numerical examples that verify the stability and
effectiveness of the new formulation are presented in Section 7. Section 8 has the concluding
remarks.
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2. PLANE WAVES OF THE EULER EQUATIONS

We consider the linearized Euler equations with a uniform mean flow in a vector form

∂u
∂t
+ A

∂u
∂x
+ B

∂u
∂y
= 0, (1)

where

u =


ρ

u
v

p

, A =


M 1 0 0
0 M 0 1
0 0 M 0
0 1 0 M

, B =


0 0 1 0
0 0 0 0
0 0 0 1
0 0 1 0

 . (2)

Here,ρ is the density,(u, v) is the velocity vector,p is the pressure, andM is the Mach
number (i.e., the mean flow nondimensionalized by the speed of sound). We also assume
that the mean flow is subsonic; i.e.,M < 1.

It is well known that, when we look for plane waves of the formu0eikx x+iky y−iωt , the
Euler equations support three types of waves: acoustic, vorticity, and entropy. In particular,
the dispersion relations for these waves are

(ω − Mkx)
2− k2

x − k2
y = 0 (3)

for the acoustic waves and

ω − Mkx = 0 (4)

for the vorticity and entropy waves.
For convenience of discussion, we use the dispersion relations to express the wave num-

berskx andky in terms of the frequencyω and a wave angleφ; i.e., we have

kx = ω cosφ

1+ M cosφ
, ky = ω sinφ

1+ M cosφ
(5)

for the acoustic waves and

kx = ω

M
, ky = ω tanφ

M
(6)

for the vorticity and entropy waves [25]. Then the plane wave solutions of the Euler equations
are found to be
ρ

u
v

p

 = A


1

cosφ

sinφ

1

 exp

(
iω cosφ

1+ M cosφ
x + iω sinφ

1+ M cosφ
y− iωt

)
(acoustic), (7)


ρ

u
v

p

 = B


0

−sinψ

cosψ

0

 exp

(
iω

M
x + iω tanψ

M
y− iωt

)
(vorticity), (8)
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
ρ

u
v
p

 = C


1
0
0
0

 exp

(
iω

M
x + iω tanχ

M
y− iωt

)
(entropy), (9)

whereφ, ψ , andχ are the angles of the wave-front normal vectors of the acoustic (A),
vorticity (B), and entropy (C) waves, respectively. We note that the wave angles are not
assumed to be the same since the three types of waves are kept independent of each other.

3. AN UNSPLIT FORMULATION

In the PML methodology, absorbing layers are added to the Euler domain so that all
three wave types mentioned in Section 2 are absorbed without reflection. The added PML
domains, shown in Fig. 1 (see also Fig. 6), are referred to as horizontaly-layers, vertical
x-layers, or corner layers. A straightforward extension of the PML technique originally
proposed by Berenger [13] for the Maxwell equations suggests a splitting of the Euler
equations according to the spatial derivative terms [14]. This results in the split version of
the PML equations for (1),

∂u1

∂t
+ σxu1+ A

∂u
∂x
= 0, (10)

∂u2

∂t
+ σyu2+ B

∂u
∂y
= 0, (11)

whereu = u1+ u2. σx andσy are positive absorption coefficients. The conditions on the
absorption coefficients are thatσx be independent ofy andσy be independent ofx with
both being assumed zero in the interior Euler domain. As shown in [14] (or [15] for a more
general case), (10) and (11) are perfectly matched to the Euler equations in the rectangular
Cartesian coordinates. That is, theoretically an acoustic, vorticity, or entropy wave can enter
a PML domain without reflection.

However, as mentioned in the Section 1, Eqs. (10) and (11) admit instability waves
which, if not suppressed by numerical dissipation or other means, could ruin the numerical
solution. In addition, (10) and (11) are only weakly well-posed and can become ill-posed
under certain low-order perturbations on the split variables [20]. We show next, however,
that the splitting of the physical variables is not essential and an alternative formulation
that is equivalent to (10) and (11) but uses unsplit physical variables may be found by
introducing an auxiliary variable.

We begin by examining the PML technique as a complex change of variables forx and
y. Let us consider the split version (10) and (11) in the frequency domain. By replacing∂

∂t
with −iω, we get

−iωũ1+ σxũ1+ A
∂ũ
∂x
= 0, (12)

−iωũ2+ σyũ2+ B
∂ũ
∂y
= 0, (13)

where a tilde indicates the solution in the frequency domain. Dividing Eqs. (12) and (13)
by 1+ iσx/ω and 1+ iσy/ω, respectively, and subsequently adding the two equations, we
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get an equation in the unsplit physical variables:

−iωũ+ 1

1+ iσx
ω

A
∂ũ
∂x
+ 1

1+ iσy

ω

B
∂ũ
∂y
= 0. (14)

Thus, if we introduce a complex change of variables forx andy as

x′ =
(

1+ iσx

ω

)
x, y′ =

(
1+ iσy

ω

)
y, (15)

Eq. (14) becomes simply

−iωũ+ A
∂ũ
∂x′
+ B

∂ũ
∂y′
= 0. (16)

It is easy to see that this is exactly the same as the Euler equations when (1) is written in the
frequency domain andx andy are replaced byx′ andy′, respectively. Therefore, the plane
wave solutions of (16) should be the same as those in (7)–(9), withx andy being replaced by
x′ andy′. That is, the plane waves of (16), and thus the PML equations (10) and (11), will be

ρ

u
v

p

 = A


1

cosφ

sinφ

1

 exp

(
iω cosφ

1+ M cosφ
x − σx cosφ

1+ M cosφ
x + iω sinφ

1+ M cosφ
y

− σy sinφ

1+ M cosφ
y− iωt

)
(acoustic), (17)


ρ

u
v
p

 = B


0

−sinψ

cosψ

0

 exp

(
iω

M
x− σx

M
x+ iω tanψ

M
y

− σy tanψ

M
y− iωt

)
(vorticity), (18)


ρ

u
v
p

 = C


1
0
0
0

 exp

(
iω

M
x − σx

M
x + iω tanχ

M
y− σy tanχ

M
y− iωt

)
(entropy).

(19)

Hereσx andσy play the role of the exponential decaying rate while both the wave angles
and the wave vectors (or eigenvectors of (14)) are unchanged. These solutions are perfectly
matched to (7)–(9). In fact, (17)–(19) are exactly the same solutions as those given in [14]
when expressed in the unsplit variables.

To implement the PML in the unsplit physical variables, we multiply (14) by(1+
iσx/ω)(1+ iσy/ω) and readily get

−iωũ+ (σx + σy)ũ+ iσxσy

ω
ũ+ A

∂ũ
∂x
+ iσy

ω
A
∂ũ
∂x
+ B

∂ũ
∂y
+ iσx

ω
B
∂ũ
∂y
= 0. (20)
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This can be written back in the time domain by introducing an auxiliary variableq below.
Thus, a reformulation of (10) and (11) using the unsplit physical variables is constructed
as

∂u
∂t
+ A

∂u
∂x
+ B

∂u
∂y
+ σyA

∂q
∂x
+ σxB

∂q
∂y
+ (σx + σy)u+ σxσyq = 0, (21)

∂q
∂t
= u. (22)

Obviously, (21) and (22) admit the same plane wave solutions as that of the split version
(10) and (11) because of their equivalence in the frequency domain. It follows that (21) and
(22) are, too, perfectly matched to the Euler equations.

It is important to note that the auxiliary variableq is needed only inside the PML domains
because the spatial derivative∂q

∂x is required only whenσy 6= 0, which happens only inside
a horizontaly-layer or corner layer and∂q

∂y is required only whenσx 6= 0 inside a vertical
x-layer or corner layer. This situation is illustrated in Fig. 1. As a result, we do not need to
know q in the Euler domain. Therefore,q is neither computed nor stored inside the Euler
domain.

However, although Eqs. (21) and (22) are now cast in the unsplit physical variables, the
instability issue remains, since both the split and unsplit versions have the same dispersion
relations by which the stability of the partial differential equations is determined. In the
next section, we offer an explanation of the cause of this instability and, in Section 5, we
develop a stable PML formulation. As we will see, the stable PML formulation adds only
one more term to Eq. (21).

We also point out that the change of variables suggested in (15) can be extended to
include the cases in which the absorption coefficientsσx andσy are functions ofx andy,
respectively [17, 21]. For simplicity, however, they are treated as constant in the present
analysis.

FIG. 1. Illustration of a computational domain combining the Euler and PML domains. Solid arrowed lines
indicate the domains where∂q/∂y is needed and dashed arrowed lines indicate the domains where∂q/∂x is
needed.
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4. THE INSTABILITY AND ITS CAUSE

Under the complex change of variables (15), the dispersion relations for (21) and (22)
can be found simply by replacingkx andky in (3) and (4) with the expressions

kx → kx

1+ iσx
ω

, ky → ky

1+ iσy

ω

. (23)

This results in (
ω − M

kx

1+ iσx
ω

)2

−
(

kx

1+ iσx
ω

)2

−
(

ky

1+ iσy

ω

)2

= 0 (24)

for the acoustic waves and

ω − M
kx

1+ iσx
ω

= 0 (25)

for the vorticity and entropy waves supported by (21) and (22). They are, of course, the
same as those of (10) and (11) given in [14] or [18].

As pointed out in [18], for certain real values ofkx andky, (24) has complexω with a
positive imaginary part, thus exponentially growing solutions. In Fig. 2, we plot the contours
of the maximum growth rateωi , the imaginary part ofω, as a function of the mean-flow Mach
numberM and absorption coefficientσx (with σy = 0) for a chosen range of wavenumbers
|kx| ≤ 5 and|ky| ≤ 5. As we can see, the growth rate increases withM andσx. Thus, in
practical computations, it would be difficult to suppress the instability occurring in flows
with a high Mach number.

To understand the cause of this instability, we reexamine the exponent in the PML acoustic
wave solution given in (17). Specifically, we consider the exponential expression for the
verticalx-layer

e−
σx cosφ

1+M cosφ x
. (26)

Sinceσx is always positive, the expression in (26) will be exponentially decaying only if

FIG. 2. Contours of maximum growth rateωi of the four roots computed numerically from dispersion re-
lation (24) as a function ofσx and Mach numberM . Indicated are level values ofωi . σy = 0, |kx| ≤ 5 and
|ky| ≤ 5.
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FIG. 3. A schematic drawing showing the relation between the wave-front normal vectorvφ = (cosφ, sinφ)
and the group velocityvg of the acoustic wave in the presence of a mean flow of Mach numberM . (a) A right-going
wave with cosφ > 0; (b) a right-going wave with cosφ < 0.

the wave is

right going and cosφ > 0

or

left going and cosφ < 0,

whereφ is the angle of the wave-front normal vector as defined in (5). Here, the direction
of wave propagation is determined by the group velocityvg, in that a wave is right going
or left going if thex-component of the group velocity is positive or negative, respectively.
In the presence of a mean flow, however, as we will see below, the group velocity is not
always in the same direction as that of the phase velocity and there now exist right-going
waves with cosφ < 0.

For the acoustic waves in the Euler equations, the group velocity, by dispersion relation
(3), is

vg =
(
∂ω

∂kx
,
∂ω

∂ky

)
= (M + cosφ, sinφ), (27)

whereφ is as defined in (5) (see, e.g., [26, 27]). Obviously, there may be right-going waves
(M + cosφ > 0) with cosφ < 0, as illustrated in Fig. 3. For these waves, therefore, the
wave amplitude actually grows exponentially after entering the PML domain, giving rise
to the instability. The unstable angles,φ, are shown in Fig. 4.

FIG. 4. Shaded are the angles of the acoustic waves that will be amplified when they enter the PML domain.



464 FANG Q. HU

On the other hand, for the horizontaly-layers in whichσx = 0, no instability will occur,
since they-component of the group velocity is in the same direction as that of the phase
velocity. In addition, the vorticity and entropy waves do not concern us because they travel
with the mean flow in thex-direction and will be decaying exponentially according to (18)
and (19).

5. STABLE PML EQUATIONS

As we have seen in the previous section, the instability of Eqs. (21) and (22), or (10) and
(11), is caused by the convective acoustic waves that have a positive group velocity but a
negative phase velocity in thex-direction, i.e., a divergence in the group velocity and the
phase velocity. Therefore, to construct stable PML equations, we first use a transformation
so that in the transformed coordinates the acoustic waves become nonconvective and the
group velocities of all linear waves are in the same direction as that of the phase velocities.
We then apply the PML technique to the transformed equations.

Following similar transformations used in several previous works in dealing with the
convective wave equation (see, e.g., [5, 16, 17, 28]), we introduce new variablesx̄, ȳ, and
t̄ as follows:

x̄ = x, ȳ =
√

1− M2y, t̄ = t + M

1− M2
x. (28)

The corresponding transformed wavenumbers and frequency are

k̄x = kx + M

1− M2
ω, k̄y = 1√

1− M2
ky, ω̄ = ω. (29)

In the transformed variables, the Euler equation (1) is found to be(
I + M

1− M2
A
)
∂u
∂ t̄
+ A

∂u
∂ x̄
+
√

1− M2B
∂u
∂ ȳ
= 0, (30)

whereI is the identity matrix. It also is easy to find that the dispersion relations for (30) in
the transformed wavenumbers and frequency are

ω̄2

(1− M2)2
− k̄2

x − k̄2
y = 0

for the acoustic waves and

ω̄

1− M2
− Mk̄x = 0

for the vorticity and entropy waves. As we can see, the acoustic waves are now nonconvective
in the transformed variables and, further, the directions of propagation for the vorticity and
entropy waves are unaltered. We note that transformation (28) is slightly different from
those used in Refs. [5], [16], and [17] in that the frequency, or time derivative, is unchanged
under the transformation. This is for the convenience of dealing with the auxiliary variable
later.
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Now, we apply the PML complex change of variables (15) to the transformed equation
(30). In the frequency domain, we modify (30) to be

−iω

(
I + M

1− M2
A
)

u+ 1

1+ iσx
ω̄

A
∂u
∂ x̄
+
√

1− M2
1

1+ iσy

ω̄

B
∂u
∂ ȳ
= 0. (31)

After multiplying (31) by(1+ iσx/ω̄)(1+ iσy/ω̄), we rewrite it back in the time domain,(
I + M

1− M2
A
)[

∂u
∂ t̄
+ (σx + σy)u+ σxσyq

]
+ A

∂u
∂ x̄
+ σyA

∂q
∂ x̄

+
√

1− M2B
∂u
∂ ȳ
+ σx

√
1− M2B

∂q
∂ ȳ
= 0,

whereq is the same as that given in (22). Finally, when expressed in the original variables
x, y, andt , we get the new formulation of the PML equations,

∂u
∂t
+ A

∂u
∂x
+ B

∂u
∂y
+ σyA

∂q
∂x
+ σxB

∂q
∂y
+ (σx + σy)u

+ σxσyq+ σx M

1− M2
A(u+ σyq) = 0, (32)

∂q
∂t
= u. (33)

To show the stability of (32) and (33) (i.e., that there is no exponentially growing solution),
we need to show only that the corresponding dispersion relations do not have any rootω

with a positive imaginary part for any real values of wavenumberskx andky. It is easy to
show that the dispersion relations for (32) and (33) can be found, equivalently, by replacing
kx andky in (3) and (4) with

kx → 1

1+ iσx
ω

(
kx + M

1− M2
ω

)
− M

1− M2
ω, ky → ky

1+ iσy

ω

, (34)

and we readily get

(ω+ iσx)
2(ω+ iσy)

2

(1− M2)2
− (ω+ iσy)

2

(
kx+ M

1− M2
ω

)2

− 1

1− M2
(ω+ iσx)

2k2
y = 0 (35)

for the acoustics waves and

ω + iσx

1− M2
− Mkx = 0 (36)

for the vorticity and entropy waves. Actually, Eqs. (32) and (33) should have eight roots for
ω. The two additional roots forω are found to beω = −iσy with a multiplicity of 2.

Clearly, (36) is stable. The stability of (35) can be shown by symbolic calculations, and
the details are given in Appendix 1. A specific case ofM = 0.9, σx = 1.5, andσy = 0 is
shown numerically in Fig. 5 in which the contours of maximumωi as a function ofkx and
ky, solved numerically from (35), are plotted. All the contours are in dashed lines, which
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FIG. 5. Contours of maximumωi , imaginary part ofω, of the four roots solved numerically from (35).
M = 0.9, σx = 1.5 andσy = 0. Indicated are the contour levels.

means that the values ofωi are all negative. Therefore, (35) will not admit exponentially
growing solutions.

It is also straightforward to find that the plane wave solutions to (32) and (33) are
ρ

u
v
p

 = A


1

cosφ

sinφ

1

 exp

(
iω cosφ

1+ M cosφ
x − σx(M + cosφ)

(1− M2)(1+ M cosφ)
x

+ iω sinφ

1+ M cosφ
y− σy sinφ

1+ M cosφ
y− iωt

)
(acoustic), (37)


ρ

u
v
p

 = B


0

−sinψ

cosψ

0

 exp

(
iω

M
x − σx

(1− M2)M
x + iω tanψ

M
y

− σy tanψ

M
y− iωt

)
(vorticity), (38)

ρ

u
v
p

 = C


1
0
0
0

 exp

(
iω

M
x − σx

(1− M2)M
x + iω tanχ

M
y

− σy tanχ

M
y− iωt

)
(entropy), (39)

whereφ, ψ andχ are, again, the angles of the wave-front normal vectors. From (37)–
(39), we can show easily that the solutions are perfectly matched at any vertical interface
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FIG. 6. An illustration of simplified PML equations for different layers.

whereσy is the same on both sides of the interface, and on any horizontal interface where
σx is the same on both sides [14]. This includes the interfaces between the Euler domain
and a PML domain as well as the interfaces between two PML domains, such as those at
the corner layers. When compared with (17)–(19), the acoustic waves now are absorbed
correctly according to the group velocity. In addition, the absorption rate in thex-direction is
increased by a factor of 1/(1− M2). This means that the absorption rate in thex-direction
will be larger than that in they-direction if the values of absorption coefficients are the
same.

We note that at a verticalx-layer or horizontaly-layer, one of the absorption coefficients
is zero, and accordingly, a simpler form of (32) results. Specifically, we have two simplified
equations. At a verticalx-layer (σy = 0), we solve

∂u
∂t
+ A

∂u
∂x
+ B

∂u
∂y
+ σxB

∂q
∂y
+ σxu+ σx M

1− M2
Au = 0. (40)

At a horizontaly-layer (σx = 0), we solve

∂u
∂t
+ A

∂u
∂x
+ B

∂u
∂y
+ σyA

∂q
∂x
+ σyu = 0. (41)

In both cases, the equation forq is (33). At a corner layer, of course, the full version of
(32) and (33) should be used. This situation is depicted in Fig. 6.

6. WELL-POSEDNESS

We now consider the well-posedness of the proposed stable PML equations (32) and (33).
For a system of hyperbolic equations in multidimensions, in general, stability alone does
not ensure well-posedness [29, 30]. For convenience of discussion, we write the equations
in the block matrix form

∂

∂t

(
u
q

)
+
(

A σyA

0 0

)
∂

∂x

(
u
q

)
+
(

B σxB

0 0

)
∂

∂y

(
u
q

)
+Q

(
u
q

)
= 0, (42)
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where

Q =
(
(σx + σy)I + σx

M
1−M2 A σxσy

(
I + M

1−M2 A
)

−I 0

)

and define

P= kx

(
A σyA

0 0

)
+ ky

(
B σxB

0 0

)
=
(

kxA + kyB kxσyA + kyσxB

0 0

)
. (43)

We first show thatP has all real eigenvalues and a complete set of eigenvectors. Let(
kxA + kyB kxσyA + kyσxB

0 0

)(
eu

eq

)
= λ

(
eu

eq

)
.

We get

(kxA + kyB)eu + (kxσyA + kyσxB)eq = λeu,

0= λeq.

Clearly, there are two subsets of eigenvalues and eigenvectors, namely, those ofkxA + kyB
(the same as that of the Euler equations) witheq = 0 and those fromλ = 0 (multiplicity 4)
with eq being arbitrary andeu = −(kxA + kyB)−1(kxσyA + kyσxB)eq.

To study the well-posedness of (32) and (33), it suffices to consider the equations without
the nonderivative terms [29, 30]. This leads to the initial value problem

∂u
∂t
+ A

∂u
∂x
+ B

∂u
∂y
+ σyA

∂q
∂x
+ σxB

∂q
∂y
= 0, (44)

∂q
∂t
= 0, (45)

with initial conditions

u(x, y, 0) = u0(x, y), q(x, y, 0) = q0(x, y). (46)

Immediately from (45) we have

q(x, y, t) = q0(x, y). (47)

Applying a Fourier transform in space to (44), we get

∂û
∂t
+ i (kxA + kyB)û+ i (kxσyA + kyσxB)q̂0 = 0, (48)

where

û(kx, ky, t) = 1

2π

∫ ∞
−∞

∫ ∞
−∞

u(x, y, t)e−i (kx x+ky y) dx dy

and likewise for̂q. Further, we note that matrixkxA + kyB can be uniformly diagonalized.
Specifically, we have

E(kxA + kyB)E−1 = 3, (49)
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where

3 =


Mkx 0 0 0

0 Mkx 0 0

0 0 Mkx + k 0

0 0 0 Mkx − k


and

E =


1 0 0 −1

0 − ky

k
kx
k 0

0 kx
2k

ky

2k
1
2

0 − kx
2k − ky

2k
1
2

 , E−1 =


1 0 1 1

0 − ky

k
kx
k − kx

k

0 kx
k

ky

k − ky

k

0 0 1 1


in which k=

√
k2

x + k2
y . Both E andE−1 are uniformly bounded for all values ofkx and

ky.
Utilizing (49), it is easy to find that the solution forû is

û = E−1e−i3tEû0− E−1(I − e−i3t )3−1E(kxσyA + kyσxB)q̂0. (50)

For well-posedness,̂u needs to be bounded for all values ofkx andky and dependent
continuously on the initial conditions. Since bothE andE−1 are bounded, the first term in
(50) is bounded. Further, since we have (by (64) and (65) in Appendix 2)

‖kx3
−1‖ ≤ C0 (51)

and

‖(I − e−i3t )3−1‖ < t, (52)

whereC0 is a constant independent ofkx andky, we get

‖û‖ ≤ ‖E−1‖ · ‖E‖ · ‖û0‖ + 2C0σy‖E−1‖ · ‖E‖ · ‖A‖ · ‖q̂0‖
+ σxt |ky| · ‖E−1‖ · ‖E‖ · ‖B‖ · ‖q̂0‖. (53)

Here‖·‖ demotes theL2 norm.
From (53), we easily see that whenσx = 0 (i.e., in horizontaly-layers), the last term in

(53) vanishes and̂u is uniformly bounded independent ofkx andky. This means that (32)
and (33) are well-posed. On the other hand, whenσx 6= 0 (in verticalx-layers and corner
layers), the solution may depend on the first derivative of the initial data, which renders the
equations only weakly well-posed.

One concern for a weakly well-posed problem is that it may become ill-posed under
certain low-order perturbations. Although it remains to be seen whether such a perturbation
exists for (32) and (33), we shall show next that the PML equations (32) and (33) can be
made symmetrizable and, thus, strongly well-posed, with only a slight modification.
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Consider a modified version of Eqs. (32) and (33) that changes only the equation forq,

∂u
∂t
+ A

∂u
∂x
+ B

∂u
∂y
+ σyA

∂q
∂x
+ σxB

∂q
∂y

+ (σx + σy)u+ σxσyq+ σx M

1− M2
A(u+ σyq) = 0, (54)

∂q
∂t
+ εσyA

∂u
∂x
+ εσxB

∂u
∂y
− u = 0, (55)

whereε is any small positive number. When written in block matrix form, (54) and (55)
become

∂

∂t

(
u
q

)
+
(

A σyA

εσyA 0

)
∂

∂x

(
u
q

)
+
(

B σxB

εσxB 0

)
∂

∂y

(
u
q

)
+Q

(
u
q

)
= 0. (56)

Equation (56) is now symmetrizable. To show this, we note the fact that, for the Euler
equation (1), matricesA and B can be simultaneously symmetrized. That is, there is a
matrixS such that

SAS−1 = Ã, SBS−1 = B̃,

where bothÃ andB̃ are symmetric matrices. Specifically, for theA andB given in (2), we
have

S=


1 0 0 −1

0 0
√

2
2 0

0 1
2 0 1

2

0 − 1
2 0 1

2

 , Ã =


M 0 0 0
0 M 0 0
0 0 M + 1 0
0 0 0 M − 1

 ,

B̃ =


0 0 0 0

0 0
√

2
2

√
2

2

0
√

2
2 0 0

0
√

2
2 0 0

 .

Now for (56), let

T =
(

S 0

0 1√
ε
S

)
.

It is straightforward to verify that

T

(
A σyA

εσyA 0

)
T−1 =

(
Ã

√
εσyÃ

√
εσyÃ 0

)

and

T

(
B σxB

εσxB 0

)
T−1 =

(
B̃

√
εσxB̃

√
εσxB̃ 0

)
.
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Both are now symmetric matrices. Therefore, (56), or (54) and (55), are symmetrizable and,
thus, strongly well-posed [30].

Although the introduction of a small parameterε in (55) formally alters the perfectly
matched status of the equations, its impact on accuracy in actual computations is expected
to be negligible as the value ofε can be arbitrarily small. Indeed, as we will see in Section 7,
numerical results show very little difference between the solutions obtained using (32) and
(33) and those using (54) and (55) for a value ofε = 0.005 or smaller. In view of this, the sta-
ble version (32) and (33) is recommended for most practical computations, since it is simpler
and, thus, computationally less costly. The symmetrizable version given in (54) and (55) is
suggested if a symmetrizable hyperbolic system is preferred or necessary for the application.

7. NUMERICAL EXAMPLES

We present two numerical examples to demonstrate the stability and the effectiveness of
the PML equations proposed in this paper as an absorbing boundary condition. Unless noted
otherwise, the PML equations used in the computations are those given in (32) and (33). Both
the Euler equation and PML equations are solved numerically by a finite difference scheme.
Specifically, the spatial derivatives are discretized by a fourth-order, seven point central
difference scheme given in [8] (the dispersion-relation-preserving scheme), combined with
a five point boundary-closure scheme given in [31]. The time integration is carried out by
a fourth-order Runge–Kutta scheme that has been optimized for minimal dissipation and
dispersion errors [32] (the LDDRK56 scheme). Further details of the scheme can be found
in [15] and [33]. As mentioned in Section 3, the auxiliary variableq is only introduced in
the PML domains and is neither computed nor stored in the interior Euler domain. To verify
stability, no numerical filtering or damping is used in all the computations reported here.
Indeed, numerical results show no instability.

Since a wide stencil is used in the finite difference scheme, the absorption coefficients
are varied gradually inside a PML domain. The variations of absorption coefficients used
in the computations are

σx = σm(1− M2)

∣∣∣∣x − xl

D

∣∣∣∣β , σy = σm

∣∣∣∣ y− yl

D

∣∣∣∣β , (57)

wherexl or yl denotes the location where the PML domain starts, andD is the width of
the PML domain. A factor of 1− M2 has been included inσx so that the absorption rates
remain the same in both thex andy directions for the reason stated in Section 5. Values of
σm1x = 2, where1x is the grid size, andβ = 2 are used for all the results.

At the end of the PML domain, no special boundary conditions are needed except those
that are necessary to maintain the numerical stability of the scheme. According to the
characteristics of (32) and (33), for a subsonic mean flow, we should specify three boundary
conditions at the left side of the computational domain and one boundary condition each
at the other three sides. For the results reported here, we apply these simple boundary
conditions at end points of the PML domains,

at x = Xmax, y = Ymin and y = Ymax : p = 0,

at inflow x = Xmin : p = ρ = v = 0,
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in which [Xmin, Xmax] × [Ymin,Ymax] denotes the entire computational domain as indicated
in Fig. 1. Other forms of characteristics-based boundary conditions are equally applicable.
Alternatively, it is also possible to apply periodic boundary conditions since the numerical
solution decays exponentially toward all the boundaries.

7.1. Propagation of Gaussian Pulses

In the first example, the Euler domain is initialized with acoustic, vorticity, and entropy
pulses, with amplitudesA0, B0, andC0, respectively, as follows:

ρ = A0 exp

[
−(ln 2)

(x + 20)2+ y2

16

]
+ C0 exp

[
−(ln 2)

(x − 20)2+ y2

16

]
,

u = B0y exp

[
−(ln 2)

(x − 20)2+ y2

16

]
,

v = −B0(x − 20) exp

[
−(ln 2)

(x − 20)2+ y2

16

]
,

p = A0 exp

[
−(ln 2)

(x + 20)2+ y2

16

]
.

FIG. 7. Contours of thev velocity component at levels±0.1,±0.05,±0.01,±0.005, and±0.001. Four graphs
correspond to timet = 30, 50, 70, and 300 as indicated.M = 0.9, D = 101x.
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FIG. 8. (a) Thev velocity component as a function of time at point(x, y) = (50, 5). (b) The difference
between the numerical and the reference solutions.

We simulate the propagation of these pulses in a mean flow of Mach numberM = 0.9. The
amplitudes of pulses areA0 = B0 = C0 = 1. The Euler domain is[−50, 50] × [−50, 50]
and the PML domains extend further with a fixed number of grid points. A uniform grid of
1x = 1y = 1 has been used with a time step1t = 0.55.

In Fig. 7, we show thev-velocity contours at timet = 30, 50, 70, and 300. For this
calculation, the PML domains are 10 points in width; i.e.,D = 101x. The contour plots
show the exponential decaying of the solution inside the PML domains with no visible
reflection. In Fig. 8a, the time history ofv at a location on the interface of the Euler and a
PML domain,(x, y) = (50, 5), is plotted. The graph includes results from three calculations
for D = 61x, 101x, and 161x, respectively. Also plotted in Fig. 8a is a reference solution
which is calculated separately by using a larger computational domain so that it is not
affected by the boundary conditions. All three cases show very little error on the scale of
the graph. In Fig. 8b, the differences between the numerical and the reference solutions are
plotted. The reflection errors are indeed very small, especially forD = 101x and 161x. To
further assess the accuracy and effectiveness of the PML equations, we plot the maximum
difference between the numerical and the reference solutions along all four interfaces,
namely,x = ±50 andy = ±50, in Fig. 9. We see that the reflection error reduces with the
increase ofD. Clearly, the PML works very well in absorbing all three types of linear waves.
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FIG. 9. Maximum difference between the numerical and the reference solutions along four interfaces at
x = ±50 andy± 50.

7.2. Periodic Source

In the second example, we solve the Euler equations with the following source term
added to the equation for the pressure:

S(x, y, t) = sin(Ät) exp

[
−(ln 2)

(x + 20)2+ y2

9

]
.

The frequency of the source isÄ = 0.03π and the mean-flow Mach number isM = 0.8. Be-
cause of the mean flow, the acoustic wave has a larger wavelength at the downstream bound-
ary than at the upstream boundary. We use this example to show that PML equations are
equally effective for long and short waves. The Euler domain is [−100, 100]× [−100, 100].
The source is located at(x, y) = (−20, 0). Figure 10 shows the pressure contours of the nu-
merical solution att = 600. The PML domains for this calculation have a widthD = 101x.
The calculated pressure as a function of time at two chosen locations,(x, y) = (100, 10)
and(−100, 10), is plotted in Fig. 11. The differences between the numerical and the refer-
ence solutions are plotted in Fig. 12. Again, excellent agreements are observed. These two
examples show that the proposed PML equations are stable and very accurate and effective
as an absorbing boundary condition.

7.3. Results of the Symmetrizable Version

In this section, we show numerical results obtained using the symmetrizable PML equa-
tions (54) and (55). The same calculations presented in the first example are repeated. The
reflection errors are shown in Fig. 13 for three calculations made with a PML domain width
D = 101x andε = 0.001, 0.005, and 0.01, respectively. Compared with the numerical re-
sults in Fig. 9 obtained in Section 7.1, we see very little difference for cases withε = 0.001



FIG. 10. Contours of the pressurepat levels±0.1,±0.05,±0.01,±0.005, and±0.001.M = 0.8, D = 101x.
t = 600.

FIG. 11. Pressure as a function of time at two selected points.M = 0.8, D = 101x.

475
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FIG. 12. Differences between the numerical and the reference solutions shown in Fig. 11.

FIG. 13. Maximum difference between the numerical and the reference solutions along four interfaces at
x = ±50 andy± 50. The PML equations used are those given in (54) and (55) with the value ofε as indicated.
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and 0.005. A value ofε = 0.01, however, produced unstable solution, since well-posedness
does not exclude the situation where the solution could grow at a bounded finite rate [29,
30]. This should not be a problem in practical computations sinceε can be taken to be
an arbitrarily small number. Therefore, as these calculations have shown, the use of the
symmetrizable PML equations (54) and (55) will not affect the accuracy.

8. CONCLUDING REMARKS

We have presented a stable PML formulation for the linearized Euler equations with a
uniform mean flow. Numerical examples show that the proposed PML equations are very
accurate and effective as a nonreflecting boundary condition for open-domain problems. For
most practical computations, the stable version given in (32) and (33) is suggested because it
is simpler than the symmetrizable version in (54) and (55) and, thus, computationally more
efficient. Of course, for applications where a symmetric hyperbolic system is preferred or
necessary, the symmetrizable version given in (54) and (55) can be readily used.

Compared with the author’s earlier formulation [14], the present formulation does not
need the application of numerical filtering or damping for the purpose of maintaining
numerical stability. Moreover, the use of unsplit variables should better facilitate its im-
plementation in many numerical schemes. Compared with the PML formulation given in
[16], the present formulation appears to be simpler and, thus, is easier for its numerical
implementation. The current formulation can also be extended to the Euler equations with
a nonuniform mean flow. This will be reported in future work.

APPENDIX 1 : STABILITY OF EQUATION (35)

In this appendix, we show that all solutions to the dispersion relation (35) are stable.
We first show the stability of (35) in the transformed coordinates defined in (28). The

corresponding dispersion relation in the transformed wavenumbers and frequency is

(ω̄ + iσx)
2(ω̄ + iσy)

2− β2k̄2
x(ω̄ + iσy)

2− β2k̄2
y(ω̄ + iσx)

2 = 0, (58)

whereβ = 1− M2. Let

ω̄ = Ä+ i δ, (59)

where we assume that bothÄ andδ are real andδ > 0. By substituting (59) into (58) we
get

Ä4− (β2k̄2+ σ̃ 2+ 4σ̃xy)Ä
2+ β2k̄2

xσ̃
2
y + β2k̄2

yσ̃
2
x + σ̃ 2

xy = 0 (60)

for the real part and

2(σ̃x + σ̃y)Ä
3− 2

[
β2k̄2

xσ̃y + β2k̄2
yσ̃x + (σ̃x + σ̃y)σ̃xy

]
Ä = 0 (61)

for the imaginary part. For brevity, we use substitutions ˜σx = σx + δ, σ̃y = σy + δ, k̄2 =
k̄2

x + k̄2
y, σ̃ 2 = σ̃ 2

x + σ̃ 2
y , andσ̃xy = σ̃xσ̃y. By solvingÄ from (61) and substituting that into
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the left-hand side of Eq. (60), after some algebraic calculations, we easily get

−[β4k̄2
xk̄2

yσ̃
2+ β4σ̃xy

(
k̄4

x + k̄4
y

)+ β2k̄2
(
4σ̃ 2

xy+ 2σ̃xyσ̃
2
)

+ 4σ̃ 2
xyσ̃

2+ σ̃xy
(
σ̃ 4+ 4σ̃ 2

xy

)]/
(σ̃x + σ̃y)

2 = 0.

It is easy to see that the above is not possible for any positive nonzero ˜σx, σ̃y and any real
values of̄kx, k̄y. This means that (58) does not admit ¯ω with a positive imaginary part.

Now to study the stability of (35), we use a similar method employed in [18]. Define

F(ω) ≡ (ω + iσy)
2− β2 (ω + iσy)

2

(ω + iσx)2

(
kx + M

1− M2
ω

)2

(62)

and rewrite (35) as

F(ω) = βk2
y. (63)

We show thatF(ω) maps the upper-halfω-plane into a complex domain that excludes the
real positive axis, as illustrated in Fig. 14, and therefore any solution ofω with a positive
imaginary part is not possible for (63). ConsiderF(ω) and its counterpart in the transformed
variables,

F̄(ω̄) = (ω̄ + iσy)
2− β2 (ω̄ + iσy)

2

(ω̄ + iσx)2
k̄2

x.

Since (58) does not have any ¯ω with a positive imaginary part,̄F(ω̄) will map the real
ω̄-axis and above into a domain that excludes the real positive axis. Now, by the fact that
the realω-axis will be mapped similarly underF(ω) and F̄(ω̄), it follows that F(ω) will,
too, map the upper-halfω-plane to a domain that excludes the real positive axis. Hence, it
is not possible for (63), and thus (35), to haveω with a real positive imaginary part.

FIG. 14. Schematic drawing of mappings underF (ω) and F̄(ω̄).
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APPENDIX 2: MATRIX NORMS

For theL2 norm of a diagonal matrix, we have

‖kx3
−1‖ =

∥∥∥∥∥∥∥∥∥∥∥∥



1
M 0 0 0

0 1
M 0 0

0 0 kx
Mkx + k 0

0 0 0 kx
Mkx − k



∥∥∥∥∥∥∥∥∥∥∥∥
≤ C0, (64)

whereC0 = max( 1
M ,

1
1−M ). Further, by

∣∣∣∣1− e−iαt

α

∣∣∣∣=
∣∣∣∣∣2ie−iαt/2 sin

(
αt
2

)
α

∣∣∣∣∣< t,

whereα is a real number, we have

‖(I − e−i3t )3−1‖ =

∥∥∥∥∥∥∥∥∥∥∥∥∥



1− e−i Mkx t

Mkx
0 0 0

0 1− e−i Mkx t

Mkx
0 0

0 0 1− e−i (Mkx+k)t

Mkx + k 0

0 0 0 1− e−i (Mkx−k)t

Mkx − k



∥∥∥∥∥∥∥∥∥∥∥∥∥
< t. (65)
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